Journal of Organometallic Chemistry, 291 (1985) 25-33 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS OF $(Me_3Si)_3CSiMe_2R$ COMPOUNDS $(R = CH=CH_2, CH_2CH=CH_2, C=CPh, Ph, and CH_2Ph)$ WITH ELECTROPHILES

RAMADAN I. DAMJA, COLIN EABORN*, and WING-CHEONG SHAM

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received February 10th, 1985)

Summary

No products of addition to the multiple bond are formed in reactions of $TsiSiMe_2R$ species ($Tsi = (Me_3Si)_3C$; $R = CH=CH_2$, $CH_2CH=CH_2$, or (C=CPh) with halogens or hydrogen halides. TsiSiMe₂CH=CH₂ gave (a) TsiSiMe₂Cl on treatment with ICl in CCl_4 ; (b) TsiSiMe₂Br on treatment with Br₂ in CCl_4 ; (c) TsiSiMe₂I (slowly) on treatment with I_2 in CCl₄; and (d) TsiSiMe₂OCOCF₃ on treatment with neat CF₃CO₂H. TsiSiMe₂CH₂CH=CH₂ gave: (a) TsiSiMe₂Cl and TsiSiMe₂I on treatment with ICl in CCl_4 ; (b) TsiSiMe₂Br on treatment with Br₂ in CCl_4 ; (c) TsiSiMe₂I on treatment with I₂ in CCl_4 ; and (d) TsiSiMe₂OCOCF₃ rapidly on treatment with neat CF₃CO₂H. TsiSiMe₂Ph gave TsiSiMe₂Br on treatment with Br_2 in CCl_4 or CH_3CO_2H , and (b) TsiSiMe₂Cl on treatment with HCl in Et₂O. Reaction of TsiSiMe₂Ph with nitric acid in (CH₃CO)₂O gave two mono-nitration products, probably the *m*- and *p*-isomers. Reaction of TsiSiMe₂CH₂Ph with Br_2 gave exclusively TsiSiMe₂Br, whereas reaction with nitric acid in (CH₃CO)₂O gave o- and p-nitro derivatives in 65/35 ratio. This last result casts serious doubt on previously proposed explanations of the predominance of ortho-nitration in the case of Me₃SiCH₂Ph.

Introduction

Much interesting chemistry has emerged from studies of tris(trimethylsilyl)methyl ('trisyl') derivatives of the type $TsiSiR_2X$ ($Tsi = (Me_3Si)_3C$) in which there is severe inhibition by steric hindrance to attack at the functional silicon centre [1]. We thus decided to study the reactions with electrophiles of the compounds $TsiSiMe_2R$, where $R = CH=CH_2$, $CH_2CH=CH_2$, C=CPh, Ph, or CH_2Ph , in order to find out whether they would show unusual features.

The interest in the compounds with $R = CH=CH_2$, $CH_2CH=CH_2$, or C=CPh, lay in the possibility that addition to the multiple bonds might occur, to give species for further study. In the case of reactions of the corresponding Me₃SiR compounds with, e.g. halogens, X_2 , or hydrogen halides, HX, it is normally assumed that X^+ or H^+ first attaches to give a carbonium ion stabilized by the β -silyl group, e.g. $Me_3SiCH_2CH_2^+$, $Me_3SiCH_2CHCH_3$, and $Me_3SiCH=CHPh$, and that the nucleophile X^- can then attack either at the carbonium ion centre to give the addition product, or at the silicon to give cleavage products (e.g. Me_3SiX and $CH_2=CHCH_3$). With $TsiSiMe_2R$ inhibition of the attack at silicon might thus have diverted the reactions towards addition; in fact, as shown below, only cleavage occurred in all the cases examined.

The interest in $TsiSiMe_2CH_2Ph$ lay primarily in its reaction with $HNO_3/(CH_3CO)_2O$. Reaction of Me_3SiCH_2Ph with this nitrating agent gives the *o*and *p*-nitro derivatives in ca. 5.7/1 ratio [2,3], and nitration with copper nitrate in $(CH_3CO)_2O$ gives these isomers in ca. 4/1 ratio [4]. The surprising predominance of the *ortho*-nitro product (the *ortho*-position of Me_3SiCH_2Ph is 9 times less reactive than the *para*- in hydrogen exchange [5], and parallel behaviour is observed in acid-cleavage of *o*- and *p*-Me_3SiCH_2C_6H_4SiMe_3 [6]) has been attributed to coordination to silicon of a nucleophilic centre of the nitrating agent (e.g. an O atom of NO_2^+ [3] or in the incipient NO_3^- ion in N_2O_5 [6]), and if this were the correct explanation then no such effect should be observed with TsiSiMe_2CH_2Ph because of the great steric hindrance to additional coordination at the relevant Si atom.

Results and discussion

Preparation of TsiSiMe₂R compounds

The required compounds were obtained by reaction of TsiLi * with (a) $Me_2Si(CH=CH_2)Cl$, (b) $Me_2Si(CH=CH_2)Cl$, (c) $Me_2Si(C\equiv CPh)F$, or (d) $Me_2Si(CH_2Ph)F$.

Reactions of $TsiSiMe_2R$ ($R = CH = CH_2$, $CH_2CH = CH_2$, or $C \equiv CPh$)

(i) The vinyl compound TsiSiMe₂CH=CH₂ was found not to react with an equimolar amount of ICl in CCl₄ during 10 d at room temperature, but when an excess of ICl (and thus a higher concentration of the reagent, which is probably important because this type of reaction is likely to be of high order in the halogen) was used, complete conversion into TsiSiMe₂Cl had taken place by the time the first ¹H NMR spectrum could be recorded (i.e. within 1 min). Subsequently $(Me_3Si)_2C(SiMe_2Cl)_2$, $Me_3SiC(SiMe_2Cl)_3$, and $C(SiMe_2Cl)_4$ were successively formed. (Similar successive cleavages were noted when $(Me_3Si)_4C$ was treated with ICl, but the cleavage of the first Si–C bond was slower than in the case of the vinyl compound [8].) Similar behaviour was observed in the reaction of TsiSiMe₂CH=CH₂ with IBr in CCl₄; i.e. no reaction with an equivalent amount of IBr, but very rapid reaction to give TsiSiMe₂Br when excess of the latter was used, followed by successive formation of $(Me_3Si)_2C(SiMe_2Br)_2$, $(Me_3Si)C(SiMe_2Br)_3$, and $C(SiMe_2Br)_4$.

Reaction of $TsiSiMe_2CH=CH_2$ with an excess of Br_2 in refluxing CCl_4 was complete within 3 h, and the organosilicon product was exclusively $TsiSiMe_2Br$. No

^{*} For convenience we represent the organolithium reagent formed from TsiH and MeLi in THF (tetrahydrofuran) as TsiLi, although the actual structure is [Li(THF)₄][Li(Tsi)₂][7].

further reaction took place on prolonged reflux. Reaction with excess of I_2 in CCl_4 was much slower, and required about 5 d under reflux for completion; the organosilicon product was exclusively $TsiSiMe_2I$.

No reactions occurred when HCl or HBr was passed into a refluxing solution of $TsiSiMe_2CH=CH_2$ in CCl_4 . The reaction of $TsiSiMe_2CH=CH_2$ with neat CF_3CO_2H at room temperature was quite slow, and 3 d were required for complete reaction. The organosilicon product was exclusively $TsiSiMe_2OCOCF_3$.

(ii) The reaction of the allyl compound TsiSiMe₂CH₂CH=CH₂ with a one molar equivalent of I₂ in CCl₄ at room temperature was ca. 55% complete in 23 h, and complete after 4 d; the product was TsiSiMe₂I. Reactions with Br₂ under similar conditions was somewhat faster, being 55% complete in 5 h and complete within 1 d; the product was TsiSiMe₂Br. The reaction with one molar equivalent of ICl was initially even faster; after 1 h at room temperature TsiSiMe₂I, TsiSiMe₂Cl, and TsiSiMe₂CH₂CH=CH₂ were present in 5/11/8 ratio, but there was no significant change in a further 6 h, presumably because ICl not used up in the cleavage had reacted with CH₂=CHCH₂I.

The reaction of $TsiSiMe_2CH_2CH=CH_2$ with I_2 was repeated at $-70^{\circ}C$ with Et_2O as solvent because of the possibility that an addition product might be preferentially formed under these conditions, but after 7 h the ¹H NMR spectrum recorded at room temperature showed that $TsiSiMe_2I$ was the only product.

No reaction occurred when HCl or HBr was bubbled through a solution of $TsiSiMe_2CH_2CH=CH_2$ in Et_2O at either -70 or $0^{\circ}C$, or when HI was bubbled through a solution in Et_2O at $-70^{\circ}C$ and the mixture was subsequently allowed to warm to room temperature.

Complete cleavage, to give $TsiSiMe_2OCOCF_3$, occurred when a solution of $TsiSiMe_2CH_2CH=CH_2$ in neat CF_3CO_2H was kept for 30 min at room temperature. (iii) No reaction occurred between $TsiSiMe_2C=CPh$ and I_2 in CCl_4 during 12 d at room temperature. Reaction with an equimolar amount of Br_2 in CCl_4 was only about 25% complete after 7 d at room temperature; the product was $TsiSiMe_2Br$. With 4 molar equivalents of Br_2 , the cleavage was complete within 0.5 h.

No reaction occurred when HCl was bubbled for 6 h through a solution of $TsiSiMe_2C \equiv CPh$ in Et₂O at either -70 or $0^{\circ}C$. However, when the procedure was repeated at room temperature complete cleavage to $TsiSiMe_2Cl$ took place.

(iv) In none of the above reactions was addition to the multiple bond observed. Presumably the initial attachment of the electrophile to carbon produces a leaving group so good that ionization to give a Me-bridged silico-cation [1,2] occurs in preference to attachment of a nucleophile at carbon.

Reactions of TsiSiMe, Ph

When TsiSiMe₂Ph was treated with nitric acid in (CH₃CO)₂O at 0°C (conditions used for nitration of Me₃SiPh [9]) the solid product was shown by its ¹H NMR spectrum to be a mixture; there were four peaks in the Si-Me region, two at δ 0.35 and 0.73 in 9/2 integration ratio, and the other two at δ 0.40 and 0.67 in the same ratio, indicating the presence of two TsiSiMe₂R' species. Attempts to separate these by TLC were unsuccessful, but GLC/MS showed that the two components, present in ca. 3/1 ratio were both mono-nitro products, TsiSiMe₂C₆H₄NO₂. Since nitration of Me₃SiPh under comparable conditions gives *o*-, *m*-, and *p*-nitro products in ca. 27/42/32 ratio [9], it seems likely that the two mono-nitro products we obtained were the *m*- and *p*-isomers, but we cannot suggest which of these predominated.

When $TsiSiMe_2Ph$ was treated with Br_2 in CCl_4 at 60°C reaction was slow, but $TsiSiMe_2Br$ was formed. Reaction in CH_3CO_2H at 60°C was initially markedly faster, but slowed down after about 80% of reaction; reaction would no doubt be much faster, and go to completion, if a higher concentration of Br_2 were used.

Reactions of TsiSiMe₂CH₂Ph

No detectable reaction occurred in 24 h when a solution containing 0.26 mmol of TsiSiMe₂CH₂Ph and 1 mmol of Br₂ in 10 cm³ of CCl₄ was kept at room temperature for 24 h. When the procedure was repeated but with only 2 cm³ of CCl₄, reaction was complete within 20 min; this result illustrates the importance of the concentration of halogen in reactions such as this, which are of high order with respect to the halogen. The product appeared to be exclusively TsiSiMe₂CH₂-C₆H₄Br-*p*, but formation of a small amount (< 5%) of the *o*-isomer would have escaped detection. The high reactivity of TsiSiMe₂CH₂Ph is consistent with the large activation of the *para*-position of Me₃SiCH₂Ph in electrophilic hydrogen exchange [5].

Reaction with nitric acid in CH_3CO_2H at 0°C gave a mixture of two mono-nitro products; the minor component (35%) was $TsiSiMe_2CH_2C_6H_4NO_2-p$, and it can be confidently assumed that the other (65%) was the *ortho*-isomer since nitration of Me_3SiCH_2Ph gives little, if any, *m*-nitro product [2–4]. It is extremely unlikely that there can be significant coordination of the nitrating species to silicon in this highly sterically hindered compound, and thus it also seems most improbable that the high proportion of *ortho*-product in nitration of Me_3SiCH_2Ph originates in such an effect.

Experimental

General

The ¹H NMR spectra were recorded at 90 MHz with solutions in CCl₄ containing CH₂Cl₂ as reference. The IR spectra were recorded with Nujol mulls. Mass spectra (EI) were obtained at 70 eV. M.p's were determined with samples in sealed tubes. Solutions of TsiLi were prepared as described in Ref. 10.

Preparations of TsiSiMe, R compounds

(a) R = CH = CH,

A solution of CH₂=CHMgBr (0.44 mol) in THF (150 cm³) was added dropwise to Me₂SiCl₂ (0.44 mol) in THF (50 cm³). The mixture was subsequently stirred at room temperature for 3 h then an excess of n-pentane was added. The solution was decanted from the solid (which was washed with some additional pentane) and distilled. The distillate of b.p. 65–80°C was carefully fractionated in a spinning band column with xylene as a chaser, and the fraction (5 g) of b.p. 79–81°C was shown by its ¹H NMR spectrum to be a mixture of Me₂Si(CH=CH₂)Cl (75%) (δ 0.80, SiMe) and Me₂Si(CH=CH₂)₂ (25%) (δ 0.15, SiMe).

Some of the above mixture (3 g; containing 0.018 mol of $Me_2Si(CH=CH_2)Cl$) in THF (10 cm³) was added dropwise to a solution of TsiLi (0.018 mmol) in THF (31 cm³). The mixture was subsequently refluxed for 2 h then the solid was filtered off

and washed with a little THF. The solution and washings were treated with aqueous NH₄Cl, and the organic layer was washed, dried (MgSO₄) and evaporated. The residue was washed with MeOH (1 cm³), and the solid formed was recrystallized from EtOH to give TsiSiMe₂(CH=CH₂) (55%), m.p. > 325°C; δ (H) 0.24 (s, 27H, SiMe₃), 0.29 (s, 6H, SiMe₂) and 5.4–7.0 ppm (m, 3H, CH=CH₂); ν (C=C) 1649 cm⁻¹; m/z 301 ([M – Me]⁺) (Found: C, 52.7; H, 11.2. C₁₃H₃₆Si₄ calcd.: C, 53.1; H, 11.5%).

(b) $R = CH_2CH = CH_2$

The compound $Me_2Si(CH_2CH=CH_2)Cl$, b.p. $110^{\circ}C/760$ mmHg (lit. [11] b.p. $110^{\circ}C/756$ mmHg) was obtained in 28% yield from Me_2SiCl_2 and the Grignard reagent prepared from $CH_2=CHCH_2Br$ and Mg in Et_2O .

Some of the Me₂Si(CH₂CH=CH₂)Cl (10.9 g, 0.081 mol) was added dropwise to a solution of TsiLi (0.027 mol) in THF (100 cm³) during 30 min. The mixture was subsequently refluxed for 24 h then treated with aqueous NH₄Cl. The organic layer was separated, washed, dried (MgSO₄), and evaporated under reduced pressure to leave an oil. A little liquid was distilled from this at 90°C/0.1 mmHg, and the residue was sublimed (100°C/0.2 mmHg) to give TsiSiMe₂(CH₂CH=CH₂) (3.4 g, 38% based on TsiLi used); m.p. 285°C; δ (H) 0.23 (s, 6H, SiMe₂), 0.25 (s, 27H, SiMe₃), 1.76 (d, 2H, CH₂), and 5.6–6.1 ppm (m, 3H, CH=CH₂); ν (C=C) 1635 cm⁻¹; m/z 315 (10%; $[M - Me]^+$), 289 (90, $[M - CH_2CH=CH_2]^+$), 73 (100, $[SiMe_3]^+$) (Found: C, 54.2; H, 11.3, C₁₅H₃₈Si₄ calcd.: C, 54.4; H, 11.4%).

(c) $R = C \equiv CPh$

The chloride Me₂Si(C=CPh)Cl (34%), b.p. 125° C/10 mmHg, was prepared by a published method [12]. Some of it (27 g) was placed in a polyethylene vessel, and EtOH (100 cm³) and 40% aqueous HF (40 g) were added [cf. ref. 13]. The mixture was stirred at room temperature for 7 h then added to an excess of light petroleum (b.p. 30-40°C). The organic layer was separated, washed with water several times, dried (MgSO₄), and evaporated under reduced pressure. The residue was distilled to give Me₂Si(C=CPh)F, b.p. 52° C/1 mmHg (lit. [12], b.p. 61° C/4 mmHg).

Some of the Me₂Si(C=CPh)F (6.0 g, 0.034 mol) was added dropwise to a solution of TsiLi (0.040 mol) in THF (120 cm³). The mixture was refluxed for 18 h then the solvent was removed under vacuum. The residue was added cautiously to ice-cold aqueous NH₄Cl, and organic material was extracted with light petroleum, b.p. 40-60°C. The petroleum was evaporated off, and a little EtOH was added to the residue. The mixture was kept at -20° C overnight, and the white solid which separated was filtered off, washed with cold EtOH, then sublimed (115°C/0.1 mmHg) to give TsiSiMe₂(C=CPh) (2.1 g, 16%), m.p. 144°C; δ (H) 0.36 (s, 27H, SiMe₃), 0.53 (s, 6H, SiMe₂), 7.3-7.5 ppm (m, 5H, C₆H₅); ν (C=C) 2150 cm⁻¹; m/z375 (90%, [M - Me]⁺), 201 (15, [$M - Me_3$ SiC=CPh - Me]⁺), and 73 (100, [Me₃Si]⁺). (Found: C, 61.7; H, 9.7. C₂₀H₃₈Si₄ calcd.: C, 61.5; H, 9.7%).

(d) R = Ph

This was prepared as previously described [14].

(e) $R = CH_2Ph$

A solution of the Grignard reagent made from PhCH₂Cl (130 g) and Mg (30 g) in Et₂O (600 cm³) was added dropwise to Me₂SiCl₂ (150 g) in Et₂O (200 cm³). The

30

mixture was subsequently refluxed for 1 h, then an excess of 2 M aqueous hydrochloric acid was added cautiously with ice-cooling. The organic layer was separated, washed, and evaporated, and the residue was placed in a polyethylene vessel and treated with 45 g of 40% aqueous HF in EtOH (100 cm³) (cf. ref. 13). The mixture was kept at 50°C for 6 h then cooled and added to an excess of water. Ether extraction following by washing, drying (MgSO₄), and evaporation left a residue, which was fractionated to give a good amount of Me₂Si(CH₂Ph)F, b.p. 82°C/30 mmHg (lit. [15], b.p. 183.5–184.5°C/760 mmHg).

Some of the fluoride (7.0 g, 0.042 mol) was added dropwise to a solution of TsiLi (0.025 mol) in THF (100 cm³). The mixture was refluxed for 16 h then cooled and added to an excess of ice-cold aqueous NH₄Cl. The organic layer was washed, dried (MgSO₄), and evaporated under reduced pressure. Ethanol was added to the residue, and the mixture was kept overnight at -20° C. The solid which separated was filtered off, and sublimed (120°C/0.1 mmHg) to give TsiSiMe₂(CH₂Ph) (1.95 g, 20%), m.p. 137.5°C; δ (H) 0.14 (s, 6H, SiMe₂), 0.32 (s, 27H, SiMe₃), 2.31 (s, 2H, CH₂), and 6.9–7.2 ppm (m, 5H, C₆H₅); *m/z* 365 (10; [*M* – Me]⁺), 289 (100 [*M* – CH₂Ph]⁺) (Found: C, 59.7; H, 10.8. C₁₉H₄₀Si₄ calcd.: C, 59.9; H, 10.5%).

Reactions with electrophiles

(a) $R = CH = CH_2$ (I)

(i) A solution of I (35 mg, 0.11 mmol) and I_2 (2.0 g, 7.9 mmol) in CCl₄ (20 cm³) was refluxed and the ¹H NMR spectrum was recorded at intervals. Conversion into TsiSiMe₂I (δ 1.08 (s, 6H) and 0.36 (s, 27H)) was complete within 5 d. The solution was shaken with aqueous NaHSO₃ to remove I_2 , volatile material was removed under reduced pressure, and the residue shown to be exclusively TsiSiMe₂I by comparison with an authentic sample.

(ii) A procedure similar to that in (i) was carried out with I (0.13 mmol) and Br_2 (0.18 mol) in CCl₄ (10 cm³). Conversion into TsiSiMe₂Br (δ 0.27 (s, 27H)) and 0.76 (s, 6H) was complete within 3 h. The solid isolated (m/z 333, 355, $[M - Me]^+$) had properties identical with those of an authentic sample.

(iii) A 1 *M* solution of ICl (0.5 mmol) in CCl₄ (0.5 cm³) was added to I (10 mg, 0.031 mmol) in an NMR tube. The ¹H NMR spectrum was recorded as soon as possible (<1 min), and showed that complete conversion into TsiSiMe₂Cl had occurred. Subsequently the compounds $(Me_3Si)_{4-n}C(SiMe_2Cl)_n$ (n = 2-4) were progressively formed; thus after 10 min the composition was (n = 1)/(n = 2) = 30/70. After 30 min it was (n = 1)/(n = 2)/(n = 3)/(n = 4) = 1/51/40/7, after 24 h (n = 3)/(n = 4) = 63/37, and after 168 h only the compound with n = 4 was present. (¹H NMR: n = 2, δ 0.39 and 0.71; n = 3, δ 0.44 and 0.78; n = 4, δ 0.86). (iv) A procedure identical to that described in (iii) above was carried out but with IBr in place of ICl. Conversion into TsiSiMe₂Br)_n took place; after 2 h the composition was (n = 1)/(n = 2) = 90/10; after 120 h, (n = 1)/(n = 2)/(n = 3) = 25/70/5; after 300 h, (n = 2)/(n = 3) = 90/10; and after 575 h, (n = 2)/(n = 3)/(n = 4) = 55/40/5. (¹H NMR spectra of (Me₃Si)_{4-n}C(SiMe₂Br)_n: n = 1, δ 0.27 and 0.76; n = 2, δ 0.42 and 0.89; n = 3, δ 0.49 and 0.98; n = 4, δ 1.05.)

(v) Hydrogen chloride was bubbled through a solution of I (0.1 mmol) in CCl_4 (20 cm³) for 3 h at room temperature. The ¹H NMR spectrum showed that no reaction had occurred.

(vii) A solution of I (0.1 mmol) in CF_3CO_2H (2 cm³) was kept at room temperature. The ¹H NMR spectrum was recorded at intervals and showed progressive formation of TsiSiMe₂OCOCF₃ (δ 0.29 (s, 27H) and 0.63 (s, 6H)). Conversion was complete in 3 d.

(b) Reactions of $TsiSiMe_2CH_2CH=CH_2$ (II)

(i) A solution of II (0.12 g, 0.36 mmol) in CCl_4 (10 cm³) containing I_2 (0.10 g, 0.39 mmol) was kept at room temperature and its ¹H NMR spectrum was recorded at intervals. Conversion into TsiSiMe₂I was 18% complete in 3 h, 30% in 8 h, 55% in 23 h, 82% in 3 d, and 100% in 4 d. The solution was subsequently shaken with aqueous NaHSO₃ then washed, dried (MgSO₄), and evaporated under vacuum to leave exclusively TsiSiMe₂I.

(ii) The above procedure was repeated but with Et₂O as solvent and at a temperature of -70° C. The ¹H NMR spectrum (at 35°C) showed that after 7 h ca. 7% conversion into TsiSiMe₂I had occurred. (Some or all of the reaction may have taken place as the sample warmed up in the NMR tube.)

(iii) A solution of II (0.45 mmol) in CCl_4 (15 cm³) containing Br_2 (0.53 mmol) was kept at room temperature. After 1 h there was 30% conversion into TsiSiMe₂Br and after 5 h, 55%. After 24 h work up as in (i) above gave exclusively TsiSiMe₂Br.

(iv) A solution of II (0.91 mmol) and ICl (0.94 mmol) in CCl_4 (21 cm³) was kept at room temperature. After 1 h the ¹H NMR spectrum showed that TsiSiMe₂Cl, TsiSiMe₂I, and II were present in 11/5/8 ratio. No further change occurred in a further 6 h.

(v) No reaction took place when HCl was bubbled through a solution of II (0.93 mmol) in Et_2O (20 cm³) at -70°C for 6 h and the mixture was subsequently stirred at -70°C for 10 h. A similar result was obtained when the procedure was repeated at 0°C .

(vi) No reaction occurred when HBr was bubbled for 7 h through a solution of II (1.6 mmol) in Et_2O (20 cm³) either at -70 or 0°C.

(vii) No reaction occurred when HI was bubbled through a solution of II (1.5 mmol) in Et₂O (20 cm³) at -70° C for 3 h and the mixture was subsequently allowed to warm to room temperature.

(viii) A solution of II (30 mg) in CF_3CO_2H (1 cm³) was kept for 0.5 h at room temperature, and the solvent was then removed under reduced pressure. The solid left was shown by its ¹H NMR spectrum to be $TsiSiMe_2O_2CCF_3$.

(c) Reactions of $TsiSiMe_2C \equiv CPh$ (III)

(i) No reaction occurred when a solution of III (0.51 mmol) and I_2 (0.51 mmol) in CCl₄ (10 cm³) was kept at room temperature for 12 d or refluxed for 4 h.

(ii) A solution of III (0.83 mmol) and Br_2 (0.83 mmol) in CCl_4 (21 cm³) was kept at room temperature and the ¹H NMR spectrum was recorded at intervals. This showed that $TsiSiMe_2Br$ was slowly formed, but the reaction was only ca. 25% complete after 7 d.

(iii) When the experiment described under (ii) above was repeated but with 3.3 mmol of Br_2 , conversion into TsiSiMe₂Br was complete within 30 min.

(iv) No reaction occurred when HCl was bubbled through a solution of III (1.3 mmol) in Et₂O (30 cm³) for 6 h at -70 or 0°C. A similar procedure at room temperature, however, gave complete conversion into TsiSiMe₂Cl.

(d) Reactions of TsiSiMe₂Ph (IV)

(i) A solution of IV (0.03 mmol) in CCl_4 (1 cm³) containing Br_2 (0.10 mmol) in an NMR tube was kept at 60°C. After 6 h the ¹H NMR spectrum indicated that about 17% conversion into TsiSiMe₂Br had occurred, and after 9 d conversion was still only about 40% complete.

(ii) When the procedure described under (i) above was repeated but with CH_3CO_2H as solvent, about 50% conversion into $TsiSiMe_2Br$ had occurred after 6 h and ca. 55% after 9 d.

(iii) A nitration mixture was prepared by adding 70% w/w aqueous nitric acid (5.0 g) dropwise with stirring and ice-cooling to $(CH_3CO)_2O$ (33 g) at 0°C. This was then added dropwise to a solution of IV (1 g) in $(CH_3CO)_2O$ (5 g) at 0°C. The mixture was kept at 0°C for 6 h then added to an excess of 38% aqueous NH₃ with ice-cooling. After extraction with ether the ethereal layer was washed, dried (MgSO₄), and evaporated under reduced pressure to leave an oil. This was shaken with a little EtOH and the mixture was kept at $-20^{\circ}C$ overnight. The solid formed was filtered off, and its ¹H NMR spectrum was recorded. It showed (along with a multiplet at δ 7.4–8.7) two sets of singlets, one at δ 0.35 and 0.73 in a 9/2 height ratio, and another at δ 0.40 and 0.67 ppm in a similar ratio. Attempts to separate the mixture by TLC on silica gel with various eluents were unsuccessful. Examination by GLC/MS showed that the mixture consisted of two mono-nitro isomers, TsiSiMe₂C₄H₄NO₂, in 3/1 ratio; the mass spectra of the two isomers were virtually identical; m/z 396 (40%, $[M - Me]^+$), 73 (100%).

(e) Reactions of TsiSiMe₂CH₂Ph (V)

(i) A solution of V (0.30 g, 0.79 mmol) in CH₃CO₂H (10 cm³) containing Br₂ (0.81 mmol) was kept at room temperature. After 30 min the ¹H NMR spectrum showed that complete conversion into a single product had occurred. Removal of the solvent gave a solid, which was recrystallized from EtOH to give TsiSiMe₂CH₂C₆H₄Br-*p* (0.27 g, 74%), m.p. 112°C; δ (H) 0.13 (s, 6H, SiMe₂), 0.32 (s, 27H, SiMe₃) and 6.8–7.4 ppm (m, 4H, with AA'BB' pattern, C₆H₄) (The 2H signal from the CH₂ group was observed but its chemical shift was not recorded.); *m/z* 443 (45%, [*M* – Me]⁺), 289 (100, [*M* – CH₂C₆H₄Br]⁺) (Found: C, 49.7; H, 8.3. C₁₉H₃₉BrSi₄ calcd.: C, 49.7; H, 8.5%).

(ii) No reaction occurred when a solution of V (0.26 mmol) in CCl_4 (10 cm³) containing Br₂ (1 mmol) was kept at room temperature for 24 h.

When the procedure was repeated but with only 2 cm³ of CCl₄, the ¹H NMR spectrum after 20 min was consistent with the exclusive formation of TsiSiMe₂CH₂C₆H₄Br-*p*. The solvent was removed to leave a solid, which was recrystallized from MeOH and then sublimed, to give TsiSiMe₂CH₂C₆H₄Br-*p*, with properties identical to those described under (i) above.

(iii) A nitrating mixture was prepared by adding 70% aqueous HNO₃ (9 g) dropwise with stirring and ice-cooling to $(CH_3CO)_2O$ (60 g) at 0°C. The solution was added dropwise with ice-cooling to a stirred solution of V (1.9 g) in $(CH_3CO)_2O$ (10 g) at 0°C. The mixture was kept at 0°C for 6 h, then worked up as described above for nitration of IV, to give a solid, which was separated into two components by TLC (silica gel; 3/1 hexane/CH₂Cl₂ as eluent). The first component eluted (65% of the mixture), assumed to be TsiSiMe₂CH₂C₆H₄ NO₂-*o*, had m.p. 92°C; δ (H) 0.04 (s, 6H, SiMe₂), 0.29 (s, 27H, SiMe₃), 2.93 (s, 2H, CH₂) and 7.1–7.9 ppm (m, 4H,

 C_6H_4); m/z 425 (10%, M^+), 410 (15, $[M - Me]^+$), 289 (40, $[M - CH_2C_6H_4NO_2]^+$), 73 (100, $[Me_3Si]^+$) (Found: C, 53.4, H, 9.4; N, 3.2. $C_{19}H_{39}NO_2Si_4$ calcd.: C, 53.6; H, 9.2; N, 3.3%). The second component (35% of mixture) had m.p. 115°C; δ (H) 0.12 (s, 6H, SiMe₂), 0.30 (s, 27H, SiMe₃), 2.53 (s, 2H, CH₂), and 7.05-8.14 ppm (m, 4H, with AA'BB' pattern) and was judged to be TsiSiMe₂CH₂C₆H₄NO₂-p (Found: C, 53.2; H, 9.3; N, 3.1%). The mass spectrum showed the same peaks as in the first isomer, but with somewhat different relative intensities, e.g. m/z 425 (20%), 410 (95), 289 (85), 73 (100).

Acknowledgements

We thank the S.E.R.C. for support, the Dow Corning Co., Ltd., for gifts of organosilicon chemicals, and Mr. R.W. Bott and Dr. P.D. Lickiss for helpful discussions. R.I.D. thanks the Libyan Government for the award of a postgraduate scholarship.

References

- 1 See e.g. C. Eaborn, in H. Sakurai (Ed.), Organosilicon and Biorganosilicon Chemistry, Ellis Horwood, Chichester, 1985, pp. 123-130. J. Organomet. Chem., 239 (1982) 93.
- 2 C. Eaborn and S.H. Parker, J. Chem. Soc., (1955) 126.
- 3 E.A. Chernyshev, M.E. Dolgaya, and A.D. Petrov, Bull. Acad. Sci., U.S.S.R., (1960) 1323.
- 4 R.A. Benkeser and P.E. Brumfield, J. Am. Chem. Soc., 76 (1954) 904.
- 5 C. Eaborn, T.A. Emokpae, V.I. Sidorov, and R. Taylor, J. Chem. Soc., Perkin Trans. II, (1974) 1454.
- 6 R.W. Bott, C. Eaborn, and K. Leyshon, J. Chem. Soc., (1964) 1971.
- 7 C. Eaborn, P.B. Hitchcock, J.D. Smith, and A.C. Sullivan, J. Chem. Soc., Chem. Commun., (1983) 827.
- 8 P.D. Lickiss, D. Phil. Thesis, Univ. of Sussex, 1983.
- 9 J.L. Speier, J. Am. Chem. Soc., 75 (1953) 2930.
- 10 Z.H. Aiube and C. Eaborn, J. Organomet. Chem., 269 (1984) 217.
- 11 V.M. Vdovin, K.S. Pushchevaya and A.D. Petrov, Izvest. Akad. Nauk S.S.S.R., Ser. Khim., (1961) 1275.
- 12 O.N. Florensova, B. Sokolov, and L.I. Volkova, Izvest. Akad Nauk S.S.S.R., Ser. Khim, (1973) 1390.
- 13 C. Eaborn, J. Chem. Soc., (1952) 2846.
- 14 C. Eaborn, P.B. Hitchcock, and P.D. Lickiss, J. Organomet. Chem., 221 (1981) 13.
- 15 V.M. Vdovin, N.S. Nametkin, E.Sh. Finkel'shtein, and V.D. Oppengeim, Izvest. Akad. Nauk, S.S.S.R., Ser. Khim, (1964) 458.
- 16 G.A. Ayoko, personal communication.